Evaluation and establishment of norms for facial index in Kerala population-a cross sectional study

Dr. Sonu M Mohan, Dr. Deepu Leander, Dr. Roopesh R, Dr. Abiraj KR, Dr. Ali Fathima S, Dr. Pratheesh AP, Dr. Krishna AS and Dr. Veena Sreekumar

DOI: https://doi.org/10.33545/27074447.2024.v6.11b.84

Abstract

The norms for facial index will help in clinical diagnosis and treatment planning in orthodontics. The established norms will assist orthodontist in determining the optimal amount, duration and timing of treatment. The norms will also be of value to maxillofacial and plastic surgeon in their treatment planning for patients from Kerala. Facial pattern indicates the direction of growth of craniofacial complex. Accurate facial analysis such as facial height, facial width and facial index is essential for diagnosis of genetic and acquired anomalies, for the study of normal and abnormal growth and for morphometric investigation. Kerala is a state with varied ethnicity, genetic influence, traditions, nutrition, environment and climate which influence the variation in facial morphology. No reports are available on the studies relating to face and facial dimensions of Kerala population so it is important to establish norms for facial index in Kerala population.

The main aim of this study is to evaluate and establish norms for facial index in Kerala population and to find out dominant facial type in Kerala population. And also to find out dominant facial type based on sexual dimorphism.

Keywords: Facial index, facial form, facial norms, facial height, facial width, anthropometry, Kerala population

Introduction

Variation in facial shape in a population is determined by facial anthropology. It characterise the distinctive feature of a face in a particular population [1]. Face allows to differentiate one person from another, and also helps to distinguish between races, sexes, ethnic group and members of same family [2]. The measurable characters are never alike for two individual. Even genetically identical twins differ in some aspects. These characteristics undergo changes in varying degree under the influence of ecological, geographical, biological, racial, gender and age factor.

Comparing the change in facial index between parent offspring and sibling give the clue to genetic transmission of inherited characteristics [3, 4]. Anthropometry expresses quantitatively the form of the body and the sexual dimorphism, which refer to phenotypic character that differ in male and female [5, 6]. Anthropometric characteristics have direct relation with sex, shape and form of an individual and are manifestation of the internal structure and tissue components, which is influenced by environmental and genetic factor [7]. Ethnicity, genetic influence, traditions, nutrition, certain pathology conditions, environment and climate influences the type of head and face [8]. To evaluate these variation facial forms should be established in a particular population.

The most distinguishable feature in an individual is face. Face is anterior part of head which lies transversely between the ears and longitudinally from chin to the hairline which includes forehead, eyes, nose, mouth and chin [9]. The facial dimensions have got special interest in different fields including anatomy, forensic science, dentistry, reconstructive and cosmetic surgery. The measurements are essentially used in the treatment of reconstructive and plastic surgery due to congenital and post traumatic deformity. The first step in cosmetic and reconstructive surgery of face is facial analysis. In facial analysis, facial width, facial height and facial index is assessed.
Facial height will be measured from Nasion (point on the root of the nose where the midsagittal plane cuts the nasofrontal sutures) to Menton (lowest point on the mandible where the lower margin of the lower jaw is intersected by the midsagittal plane) with the help of sliding caliper. Facial width will be measured between the zygion (most laterally placed point on the zygomatic arch) of each side with the help of spreading caliper.

Facial index is calculated using formula

\[
\text{Facial Index} = \frac{\text{Facial height}}{\text{Facial width}} \times 100
\]

Based on this index, the facial shape and type will be categorised according to Banister’s classification. Classification of facial index determined on the basis of International Descriptions \[10\].

<table>
<thead>
<tr>
<th>Facial Shape</th>
<th>Range of Facial Index</th>
<th>Type of face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperleptoprosoponic</td>
<td>< 79.9</td>
<td>Very broad face</td>
</tr>
<tr>
<td>Euryprosoponic</td>
<td>80-84.9</td>
<td>Broad face</td>
</tr>
<tr>
<td>Mesoprosoponic</td>
<td>85-89.9</td>
<td>Round face</td>
</tr>
<tr>
<td>Leptoprosoponic</td>
<td>90-94.9</td>
<td>Long face</td>
</tr>
<tr>
<td>Hyperleptoprosoponic</td>
<td>> 95</td>
<td>Very long face</td>
</tr>
</tbody>
</table>

Facial form helps in diagnosis of genetic and acquired anomalies for the study of normal and abnormal growth and for morphometric investigations. Facial forms play an important role in orthodontic diagnosis, treatment planning and prognosis. The facial form is related to pharyngeal airspace \[11\], anatomy of masticatory muscles \[12, 13\], dentoalveolar anatomy \[14\] and occlusion type \[15, 16\]. The direction of growth of craniofacial complex is influenced by facial forms \[17, 18\], this helps to systemise the biomechanics used to treat orthodontic cases \[19\]. Postural relation of head, jaw and tongue are established during birth, and it alters as necessary to maintain airway \[20\]. There exist a link between respiration and malocclusion which could be due to soft tissue pressure against dentition that affect dental arch form, face morphology and direction of maxillary and mandibular growth. An alteration in jaw posture and head posture such as head extension will lead to stretching of facial musculature, which ultimately affects facial form. Occlusion and facial morphology are inter related, as there is strong evidence that such relationship is genetically determined. For this reason, it is important to identify how the face behaves in case of malocclusion, regardless of patient’s age, since facial morphology is established at an early age. The spatial relationship established between mandible and maxilla tends to remain unchanged throughout the growth period, even though it has not achieved its final dimension at that point. This trend also applies to the sagittal relationship established between dental arches, with dental and facial patterns being determined at an early age \[17\]. Clinical facial analysis reveals the spatial arrangement of basal bones, maxilla and mandible, and is capable of identifying facial balance or skeletal discrepancy \[21\]. Facial index is also important factor in diagnosis and treatment of obstructive sleep apnea as euryprosopie face favours nasal breathing \[4\]. Hence facial index, facial height and facial width parameter should be given importance in orthodontics and more research should be done in this field.

Kerala is a state with varied ethnicity, genetic influence, traditions, nutrition, environment and climate which influence the variation in facial morphology. The present study is aimed to determine the morphometric facial types and their predominance in Kerala population. No reports are available on the studies relating to face and facial dimensions of Kerala population so it is relevant to establish norms for facial index in Kerala population.

Methods

The present study was cross sectional descriptive study to evaluate and establish norms for facial index in Kerala population. The protocol for the study was reviewed and approved by the Institutional Ethic Committee (IEC) of PMS College of Dental Science and Research, Vattappara, Trivandrum. (PMS/IEC/2017/07)

Volunteers from six Dental Colleges in Kerala geographically located on South, Central and North Kerala were selected. The following dental colleges were selected.

1. PMS College of Dental Science and Research Trivunathanpuram.
2. Government Dental College, Thiruvananthpuram.
4. Amrita School of Dentistry, Ernakulam.
5. Pariyaram Dental College, Kannur.
6. KMCT Dental College, Kozhikode.

Sample size was calculated using the formula

\[SS=Z^2\times p \times (1-p)\]

\[C^2\]

Total population of Kerala within the age group of 18 to 23 years is 305130759. Accordingly the sample size is determined with the following inputs.

The confidence level is 95%, level of significance is 5%, Z value is 1.96, confidence interval is 6%.

sample size based on the above formula is 270.

To increase the validity of the study the sample size was increased to 276 (138 males and 138 females) Volunteers from six dental colleges were selected which was divided into North zone, central zone and south zone.

North zone consisted of volunteers from

1. Pariyaram Dental College, Kannur
2. KMCT Dental College, Kozhikode

Central zone consisted of Volunteers from

1. Amritha School of Dentistry, Ernakulam
2. Government Dental College Kottayam.

South Zone consisted of volunteers from

1. PMS Dental College, Thiruvananthapuram.
2. Government Dental College, Thiruvananthapuram.

From each college 46 volunteers were selected, 23 males and 23 females.

Inclusion Criteria

1. People within the age group of 18 to 23 years.
2. People who are healthy without any obvious craniofacial abnormalities like congenital, developmental or acquired through any form of trauma.
3. People who are completely willing for this study and who will give a written consent.

Exclusion Criteria
1. People with any history of plastic or reconstructive surgery.
2. People with any congenital or developmental anomalies.

Methodology
Volunteers from six Dental Colleges in Kerala geographically located on South, Central and North Kerala, and who are native to those places respectively were selected. Study population was grouped into southern zone, central zone and northern zone based on the location of dental colleges. From each representative college 46 Volunteers, 23 males and 23 females were selected. Volunteers were selected by Simple Random Sampling. A proforma for nativity proof was distributed and obtained from volunteers. A permission letter was obtained from the principal of respective dental colleges where study will be conducted explaining the aim, characteristics, and importance of study.

The volunteers were asked to sit in a chair in relaxed position keeping the mouth closed and teeth in central occluded position and head in anatomical position. All the measurements will be carried out after locating anatomical landmarks and measurements will be taken to the nearest 1mm. Measurements will be recorded 2-3 times, average of the measurements will be taken.

Facial height was measured from Nasion (point on the root of the nose where the midsagittal plane cuts the nasofrontal sutures) to Menton (lowest point on the mandible where the lower margin of the lower jaw is intersected by the midsagittal plane) with the help of sliding caliper and Facial width will be measured between the zygion (most laterally placed point on the zygomatic arch) of each side with the help of spreading caliper.

Facial index was calculated using the following formula.

\[
\text{Facial Index} = \frac{\text{Facial height}}{\text{Facial width}} \times 100
\]

Based on this index, the facial shape and type will be categorised according to Banister’s classification. Classification of facial index determined on the basis of International Descriptions10.

<table>
<thead>
<tr>
<th>Facial Shape</th>
<th>Range of Facial Index</th>
<th>Type of face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypereuryprosopic</td>
<td>< 79.9</td>
<td>Very broad face</td>
</tr>
<tr>
<td>Euryprosopic</td>
<td>80-84.9</td>
<td>Broad face</td>
</tr>
<tr>
<td>Mesoprosopic</td>
<td>85-89.9</td>
<td>Round face</td>
</tr>
<tr>
<td>Leptoprosopic</td>
<td>90-94.9</td>
<td>Long face</td>
</tr>
<tr>
<td>Hyperleptoprosopic</td>
<td>> 95</td>
<td>Very long face</td>
</tr>
</tbody>
</table>

Fig 1: Morphological classification of facial form

Fig 2: Sliding caliper for measuring facial height
Fig 3: Spreading caliper for measuring Facial width.

Fig 4: Showing Measurement of facial width.
Results
The present study was conducted for the evaluation and establishment of norms for facial index in Kerala population and to find out prevalent facial type based on sexual dimorphism. Study sample consisted of 276 subjects (138 males and 138 females) of age group 18-23 years selected from 6 Dental colleges in Kerala, 46 subjects (23 males & 23 females) from PMS College of Dental Science and Research, Trivandrum, 46 subjects (23 males & 23 females) from Government Dental College, Trivandrum, 46 subjects (23 males & 23 females) from Government Dental College, Kottayam, 46 subjects (23 males & 23 females) from Amrita School of Dentistry, Ernakulam, K.M.C.T Dental College, Kozhikode and 46 (23 males & 23 females) samples from Pariyaram Dental College, Kannur. Data was entered into Microsoft excel data sheet and was analyzed using SPSS for Windows (Statistical Presentation System Software, SPSS Inc.) version 17.0. Continuous data was represented as mean and standard deviation. Student t test and chi square test was used.

Graphical representation of data: MS Excel and MS word was used to obtain various types of graphs such as bar diagram and Pie diagram.

p value (Probability that the result is true) of <0.05 was considered as statistically significant after assuming all the rules of statistical tests.

Statistical software: MS Excel, SPSS version 17.0 was used to analyze data.

Table 1, table 2 and table 3 shows data for facial height, facial width and facial index from North, Central and South zones respectively. Facial height and facial width were measured in millimeters.

Descriptive details of Facial height, Facial width and Facial Index in North Zone, Central zone and South Zone
Table 4 and graph 1 shows mean facial height, facial width and facial index of each zone. In north zone the mean facial height of 117.72±5.45 mm, facial width of 127.00±5.33 mm and facial index of 92.74±3.66, In central zone the mean facial height of 118.40±5.71 mm, facial width of 126.54±5.54 mm and facial index of 93.59±2.77. In south zone the mean facial height of 117.78±5.73 mm, facial width of 128.70±4.53 mm and facial index of 91.55±3.99. Mean facial height, facial width and facial index of 3 zones is 117.97±5.62, 127.41±5.22, 92.63±3.6 respectively.

Table 4: Descriptive detail of facial height, facial width and facial index in North zone, Central zone and South zone

<table>
<thead>
<tr>
<th>Zones</th>
<th>Group</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Facial height</td>
<td>92</td>
<td>104.60</td>
<td>128.00</td>
<td>117.7293</td>
<td>5.45585</td>
</tr>
<tr>
<td></td>
<td>Facial width</td>
<td>92</td>
<td>115.00</td>
<td>138.00</td>
<td>127.0087</td>
<td>5.33682</td>
</tr>
<tr>
<td></td>
<td>Facial Index</td>
<td>92</td>
<td>81.72</td>
<td>98.40</td>
<td>92.7488</td>
<td>3.66336</td>
</tr>
<tr>
<td>Central</td>
<td>Facial height</td>
<td>92</td>
<td>104.90</td>
<td>131.00</td>
<td>118.4076</td>
<td>5.71595</td>
</tr>
<tr>
<td></td>
<td>Facial width</td>
<td>92</td>
<td>114.00</td>
<td>143.00</td>
<td>126.5435</td>
<td>5.54994</td>
</tr>
<tr>
<td></td>
<td>Facial Index</td>
<td>92</td>
<td>87.10</td>
<td>98.34</td>
<td>93.5918</td>
<td>2.77985</td>
</tr>
<tr>
<td>South</td>
<td>Facial height</td>
<td>92</td>
<td>104.00</td>
<td>128.00</td>
<td>117.7880</td>
<td>5.73194</td>
</tr>
<tr>
<td></td>
<td>Facial width</td>
<td>92</td>
<td>119.00</td>
<td>139.00</td>
<td>128.7043</td>
<td>4.53686</td>
</tr>
<tr>
<td></td>
<td>Facial Index</td>
<td>92</td>
<td>82.31</td>
<td>99.19</td>
<td>91.5530</td>
<td>3.99378</td>
</tr>
<tr>
<td>Total</td>
<td>Facial height</td>
<td>276</td>
<td>104.00</td>
<td>131.00</td>
<td>117.9750</td>
<td>5.62388</td>
</tr>
<tr>
<td></td>
<td>Facial width</td>
<td>276</td>
<td>114.00</td>
<td>143.00</td>
<td>127.4188</td>
<td>5.22437</td>
</tr>
<tr>
<td></td>
<td>Facial Index</td>
<td>276</td>
<td>81.72</td>
<td>99.19</td>
<td>92.6312</td>
<td>3.60255</td>
</tr>
</tbody>
</table>
Graph 1: Descriptive detail of facial height, facial width and facial index in North zone, Central zone and South zone

Distribution of face type in Kerala Population

Table 5 shows distribution of facial type in Kerala population with 53.3% leptoprosopic facial form which is the most dominant facial form, 27.9% hyperleptoprosopic facial form, 15.2% mesoprosopic facial form, 3.6% euryprosopic facial form.

Table 5: Distribution of face type in Kerala population

<table>
<thead>
<tr>
<th>Facial index</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 79.9 (Hyper-euryprosopic)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-84.9 (Euryprosopic)</td>
<td>10</td>
<td>3.6</td>
</tr>
<tr>
<td>85-89.9 (Mesoprosopic)</td>
<td>42</td>
<td>15.2</td>
</tr>
<tr>
<td>90-94.9 (Leptoprosopic)</td>
<td>147</td>
<td>53.3</td>
</tr>
<tr>
<td>> 95 (Hyperleptoprosopic)</td>
<td>77</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Graph 3: Distribution of face type in Kerala population

Comparison of Gender among the variables

Table 6 and graph 4 shows comparison of facial height, facial width and facial index between males and females and it was statistically significant with p value = 0.001. The mean facial height in females is 115.31±5.5 mm, facial width is 125.97±5.14 mm, facial index is 91.59±3.74. The mean facial height in males is 120.63±4.33 mm, facial width is 128.86±4.9mm and facial index is 93.67±3.14. The facial height, facial width and facial index was more in males than in females.
Table 6: Comparison of gender among the variables

<table>
<thead>
<tr>
<th>Days</th>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial height</td>
<td>Male</td>
<td>138</td>
<td>120.6333</td>
<td>4.33942</td>
<td>.36940</td>
<td>0.001*</td>
</tr>
<tr>
<td>Facial width</td>
<td>Male</td>
<td>138</td>
<td>128.8674</td>
<td>4.90796</td>
<td>41779</td>
<td>0.001*</td>
</tr>
<tr>
<td>Facial width</td>
<td>Female</td>
<td>138</td>
<td>93.6701</td>
<td>3.14333</td>
<td>31848</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the 0.05 level.

Graph 4: Comparison of gender among the variables

4. Comparison of Gender among facial index

Table 7 and graph 5 shows comparison of gender among facial index which shows in Kerala population males are 0.7% euryprosopic, 9.4% mesoprosopic, 55.8% leptoprosopic, 34.1% hyperleptoprosopic, and females are 6.5% euryprosopic, 21.0% mesoprosopic, 50.7% leptoprosopic, 21.7% hyperleptoprosopic.

Table 7: Comparison of gender among the facial index

<table>
<thead>
<tr>
<th>Facial index</th>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 79.9 (Hypereuryprosopic)</td>
<td>Count</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0.7%</td>
<td>6.5%</td>
<td>3.6%</td>
</tr>
<tr>
<td>80-84.9 (Euryprosopic)</td>
<td>Count</td>
<td>13</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9.4%</td>
<td>21.0%</td>
<td>15.2%</td>
</tr>
<tr>
<td>85-89.9 (Mesoprosopic)</td>
<td>Count</td>
<td>77</td>
<td>70</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>55.8%</td>
<td>50.7%</td>
<td>53.3%</td>
</tr>
<tr>
<td>90-94.9 (Leptoprosopic)</td>
<td>Count</td>
<td>47</td>
<td>30</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>34.1%</td>
<td>21.7%</td>
<td>27.9%</td>
</tr>
<tr>
<td>>95 (Hyperleptoprosopic)</td>
<td>Count</td>
<td>138</td>
<td>138</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

* Significant at the 0.05 level.
Discussion
Analysis of the face is a preliminary and important step in the approach to the patient who presents for facial plastic and reconstructive surgery [22]. Previous studies have shown specific dentofacial characteristics in each ethnic group, leading professionals to consider these differences in orthodontic and surgical diagnosis and treatment planning [23]. The present study reported the anthropometrical variations in facial index of students by measuring morphological facial height, facial width and calculating facial index. All measurements were expressed in millimeters. The facial dimensions were expressed by facial index which is ratio of facial length to facial breadth and multiplied by 100. The present study revealed that the norm for facial index in Kerala population is 92.63 ± 3.60, facial height is 117.97 ± 5.62 mm and facial width is 127.41 ± 5.22 mm. In north zone the mean facial height of 117.72 ± 5.45 mm, facial width of 127.00 ± 5.33 mm and facial index of 92.74 ± 3.66. In central zone the mean facial height of 118.40 ± 5.71 mm, facial width of 126.54 ± 5.54 mm and facial index of 93.59 ± 2.77. In south zone the mean facial height of 117.78 ± 5.73 mm, facial width of 128.70 ± 4.53 mm and facial index of 91.55 ± 3.99. The mean facial index of males in Kerala population is 93.67 ± 3.14 and the mean facial index of females in Kerala population is 91.59 ± 3.74. The difference of facial index between males and females was statistically significant.

Shetti V reported the mean facial index for males and females as 87.19 and 86.75 respectively in medical students of Manipal Medical College, Manipal. The minimum facial indexes in both sexes were 75.75 and maximum facial index of males and females were 96.66 and 100 respectively. The difference that was observed between two groups was statistically significant (p=0.018). The dominant face type in Malaysian males were euriproscopic and female belonged to mesoproscopic. In the present study only 0.7% males were...
euryprosopic and 21% females were mesoprosopic. The dominant facial type of male was lepto- prosopic and the dominant facial type of female was lepto-prosopic [35]. Study conducted by Sandip et al. on normal undergraduate medical students of Nepalese origin from BP Koirala Institute of Health Sciences (BPKIHS), Nepal found that the face form of males were mesoprosopic and of females were lepto-prosopic. In the present study also the females were lepto-prosopic. They showed the comparison of all measured parameters with geographical differences. In present study also the students included were from different ethnic and geographical variations and the measurements are affected by ecological, biological, geographical, racial, gender, age related and nutritional factors [17].

D. Jeremić et al. conducted anthropometric study of the facial index in the population of Central Serbia. The research was conducted on 700 persons (360 males and 340 females), aged 18-65 years, selected randomly. The measured parameters were morphological facial height and breadth. There were significant differences in the facial parameters of male compared to female subjects in all observed parameters. The mean value of the morphological facial height in the study population was 116.8 mm ± 7.28, maximum facial breadth 124.12 mm ± 8.44, while the mean value of the total facial index was 93.68 ± 6.86 which was close to the facial index in the present study which was 93.67 ± 3.14. The dominant phenotype in the studied population was lepto-prosopic which was similar to the facial type in the present study [30].

Mar Mar Wai et al. done nasofacial anthropometric study among university students of three races in Malaysia. The study was aimed to observe the variations of length and width of face and nose among university students of three races in Malaysia. A cross-sectional study was done on 200 college students aged between 18 and 21 years, using convenient sampling method. The mean facial index of Malay subjects showed 88.82 ± 6.63, showing dominance of the lepto-prosopic face type which was similar to the present study where dominant facial type was lepto-prosopic [38].

Kanan U et al. studied the variation in facial index of Gujarati males. The study results showed that dominant type of male face was euri- prosopic and rare type of face was lepto-prosopic and hyperlepto-prosopic which was opposite to the findings of present study as in Kerala Population dominant face type was lepto-prosopic and the rare face type was Euryprosopic [29].

Jeyaseelann et al. studied facial index among the ethnic races of Malaysian Population. A total number of 565 students between the ages of 20 – 25 years, 179 Malays, 215 Chinese and 171 Indians were used in the present study. Facial index calculated from the measurements made. There was statistically significant difference in facial index among males and females of Indian race (p=0.032). Indian race, where males have a higher facial index than females. In the present study also males had higher facial index than females [41]. Raymond et al. (2019) studied on facial types and morphology among Sisaala and Dagaaba adult population in the Upper West Region, Ghana. In the study, a total of 387 healthy individuals (202 females and 185 males), between 18 and 60 years of age were recruited. In the study main finding was that, the males had higher facial height and breadth than females and the prominent facial type was lepto-prosopic the findings were close to the present study [45]. In this study 53.3% are lepto-prosopic, 27.9% are hyperlepto-prosopic, 15.2% are mesoprosopic, 3.6% are euryprosopic, 0% hypereuryprosopic. Hence the commonest facial type in Kerala population is lepto-prosopic second most common is hyper lepto-prosopic third most common is mesoprosopic and least common is euryprosopic and hyper euryprosopic. In Kerala population males are 0.7% euryprosopic, 9.4% mesoprosopic, 55.8% lepto-prosopic, 34.1% hyperlepto-prosopic, and females are 6.5% euryprosopic, 21.0% mesoprosopic, 50.7% lepto-prosopic, 21.7% hyperlepto-prosopic which shows dominant facial type in males and females in Kerala is lepto-prosopic. This study had been conducted on 276 students in Kerala which is the limitation of this study. Hence, in future similar studies with larger sample size is recommended. The findings of study will be useful to orthodontists, plastic surgeons, anatomists, maxillo-facial surgeons and anthropologists. This study will serve as base line information for future facial studies on Kerala population.

Conclusion
Facial index is crucial for diagnosis and treatment planning in orthodontics [7]. Facial pattern indicates the direction of growth of craniofacial complex. Facial index influences the anchorage system, growth prediction of maxillofacial structures on orthodontic treatment outcome. Facial index also have influence on bite force and masticatory function [8]. In Kerala population 53.3% are lepto-prosopic, 27.9% are hyperlepto-prosopic, 15.2% are mesoprosopic, 3.6% are euryprosopic, 0% hypereuryprosopic. Hence the commonest facial type in Kerala population is lepto-prosopic, second most common is hyper lepto-prosopic, third most common is mesoprosopic and least common is euryprosopic and hyper euryprosopic. In Kerala population males are 0.7% euryprosopic, 9.4% mesoprosopic, 55.8% lepto-prosopic, 34.1% hyperlepto-prosopic, and females are 6.5% euryprosopic, 21.0% mesoprosopic, 50.7% lepto-prosopic, 21.7% hyperlepto-prosopic which shows dominant facial type in males and females in Kerala is lepto-prosopic. In this study significant differences were found in the facial measurements and facial index of males and females with values being higher in males. Based on this study the most common type of face form in Kerala population is lepto-prosopic. Both males and females are lepto-prosopic. The facial measurements obtained in this study were quite different from the findings in other populations. Thus it supports the notion that there appears to be substantial variability in facial morphology under the influence of ecological, geographical, biological, racial, gender and age factor.

Conflict of Interest
Not available

Financial Support
Not available

References
3. Doni RP, Vijayaraghavan V. A study on measurement and correlation of cephalic and facial indices in males of South Indian population. International Journal of Medical Research & Health Sciences; c2013, 2(3).
10. Williams PL, Banister LH, Berry MM, Collins P, Dyson M, Dussek JE. Gray’s Anatomy. The anatomical basis of medicine and surgery. 38th Ed.

How to Cite This Article

Creative Commons (CC) License
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.